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ABSTRACT Theories of image segmentation suggest that
the human visual system may use two distinct processes to
segregate figure from background: a local process that uses
local feature contrasts to mark borders of coherent regions
and a global process that groups similar features over a larger
spatial scale. We performed psychophysical experiments to
determine whether and to what extent the global similarity
process contributes to image segmentation by motion and
color. Our results show that for color, as well as for motion,
segmentation occurs first by an integrative process on a coarse
spatial scale, demonstrating that for both modalities the
global process is faster than one based on local feature
contrasts. Segmentation by motion builds up over time,
whereas segmentation by color does not, indicating a funda-
mental difference between the modalities. Our data suggest
that segmentation by motion proceeds first via a cooperative
linking over space of local motion signals, generating almost
immediate perceptual coherence even of physically incoherent
signals. This global segmentation process occurs faster than
the detection of absolute motion, providing further evidence
for the existence oftwo motion processes with distinct dynamic
properties.

A fundamental goal of vision is to locate, characterize, and
recognize objects. But to determine "what" is "where" the
visual system must first determine which parts of the image
belong together. This is the problem of image segmentation,
central to both human and machine vision. How the brain
implements image segmentation is not known, although var-
ious physiological mechanisms have been proposed (for a
review, see ref. 1).

Objects are distinguished not only by feature contrasts at
their boundaries with the background but also by the similarity
of feature properties within their boundaries. Two types of
segmentation process may exist to exploit these two funda-
mental distinctions: a local edge-based process that marks
differences in visual attributes and a global region-based
process that finds homogeneous areas by integrating informa-
tion about attributes over space. Edge detection is fundamen-
tal to many machine vision algorithms (2) but rarely flawless
on its own in segmenting an image into relevant regions. In
natural images, edges are disrupted by noise, occlusions, and
interference from other edges. Edges are also ambiguous:
luminance edges, for example, may arise from many distinct
physical causes. Therefore, edge detection segmentation algo-
rithms typically require fragile and adaptive adjustment of
thresholds, iterations on multiple spatial scales, and special
line-completion methods (3, 4). Region-based segmentation
algorithms typically "grow" regions from seed patches, accret-
ing all those surrounding areas that share the same properties
as the seed, the end result being a set of internally homoge-
neous regions (5). But region-based algorithms also face

problems in defining and setting thresholds for homogeneity,
particularly in noisy or complex images characterized by
multiple attributes.

Recent computer algorithms for image segmentation ad-
dress the dual problems of region-based and edge-based
processes by combining them (4, 6, 7). There is some exper-
imental evidence that both types of segmentation process also
act in human vision. The importance of similarity in perceptual
grouping was emphasized by the Gestalt psychologists, whose
laws of figural unity included spatial contiguity, conformity of
movement or depth, and uniformity of color and texture (8).
Similarity of features also figures importantly in modern
theories of segmentation and binding (e.g., ref. 9). Recent
psychophysical studies in humans have emphasized the role of
discontinuities in image segmentation and demonstrated that
local differences in motion, color, texture, depth, and lumi-
nance may drive image segmentation (for reviews, see, e.g.,
refs. 10-12). Yet most human psychophysical studies of image
segmentation have not focused on the distinction between
edge-based and region-based segmentation, with some notable
exceptions (13, 14). Mumford et al. (14) showed that in the
luminance domain, the human visual system uses a hybrid
algorithm that is sensitive both to the luminance variation
within a region and to the sharpness of its edges.

In the natural world, the human visual system must combine
information from different attributes to find object boundaries
and distinguish surfaces. We ask herein whether the segmen-
tation processes based on different attributes are themselves
different. Although relative motion is a compelling cue for
image segmentation, for example, it is debatable whether the
relative motion signal is computed by an edge-based or region-
based mechanism (15, 16). Much evidence suggests that mo-
tion and color information are conveyed by two distinct
functional streams (17, 18) although recent anatomical and
physiological results (19, 20) indicate substantial cross-talk
between them. It is therefore interesting to determine whether
fundamental differences in segmentation by motion and color
exist. Herein we compare characteristics of edge-based and
region-based segmentation processes for color and motion, by
manipulating both local feature contrast and similarity signals
in a figure-ground segregation task.
Because local feature contrast may occur on a smaller spatial

scale than similarity signals, the distinction between edge-
based and region-based processes is also a distinction between
different spatial scales. The importance of spatial scale for a
number of low-level spatial vision tasks has been studied by
Watt (21), who suggested that the visual system scans from
coarse to fine spatial scales directly after stimulus onset. From
visual recognition studies, Navon (22) concluded that global
structure emerges earlier in the percept than local features.
Herein we also examine the temporal characteristics of the two
hypothesized segmentation processes, for motion and for color.
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METHODS
Observers performed a two-alternative-forced-choice (2AFC)
figure-ground discrimination task on a 6.5° square array of
1024 randomly positioned dots (each 4.7' square) against a
dark gray or black field in a black surround. The target was a
vertical band of dots that appeared either to the left or right
of midline and was distinguished from the background by a
different distribution of dot speeds or colors (Fig. 1). We
measured target detection thresholds by varying the difference
between the target and background distributions, using the
method of constant stimuli. Stimuli were generated on a
Silicon Graphics computer and displayed on a linearized EIZO
flexscan T560i-T RGB monitor.
The four observers sat at chin rests and viewed the stimuli

binocularly in a darkened room from a distance of 1.14 m. The
observers began each trial with a button press, after which a
small central white fixation cross appeared for 500 msec. The
cross was extinguished and a uniform dark gray background
appeared for 300 msec (a blank interval), followed by the
stimulus for a specified duration between 17 and 200 msec,
which was then followed by a second blank interval. A mask,
consisting of a square array of moving dots with random colors
and speeds, then appeared for 67 msec. The stimulus onset
asynchrony (SOA) between stimulus and mask onset was fixed
at 300 msec. The observer was given unlimited time to make
a response after the mask. Observers were instructed to press
the left (right) mouse button if the target appeared to the left
(right) of midline and were asked to keep fixation at the
location of the fixation cross throughout the complete trial.
Motion Stimuli and Measurements. In all motion experi-

ments (but one; see experiment III below), the target and
background dots moved vertically upward with speeds drawn
from 8 distributions; that is, speeds were uniform within each
region. All dots were reddish [Commission Internationale de
l'Eclairage (CIE) x, y values = 0.45, 0.35; luminance = 10
cd/m2] against a black field. We measured thresholds for target
detection as a function of difference between the target and
background speeds. In every case, since the background dots
moved, detection of motionper se was not sufficient for target
detection.
To vary the strength of region-based signals while keeping

edge information constant, we varied the size and eccentricity
of the target stripe. If edge information were the only signal to
segmentation, then target detection thresholds should depend
only on the detectability of its edges. For example, ifwe assume
that thresholds for edge detection increase with increasing
eccentricity, a narrow target should be detected more easily

1- 1.63°-I
----------------- 6.50 ------ ---------I

FIG. 1. Schematic drawing of stimulus, with inner edge of target at
1.63° eccentric to central fixation cross, shown for reference only. In
the motion stimulus, all dots are of same color and luminance. Arrows
indicate that target and background dots move with different speeds,
drawn from either 8 or Gaussian distributions.

than a broader target if the inner edges of each are at the same
eccentricity. In experiment Ia, we therefore measured target
detection thresholds for two conditions: (i) inner edges of both
narrow (0.32°) and broad (1.44°) targets fixed at 1.63°, with
outer edges at 1.95° and 3.07° respectively; and (ii) outer edges
of both narrow and broad targets fixed at 3.07°, with inner
edges at 2.75° and 1.63°, respectively. The background dot
speed was 1.6°/sec and stimulus duration was 50 msec.

In experiment IIa, we varied target width (0.16°, 0.32°, 0.48°,
and 0.72°) and stimulus duration (34, 50, 67, 100, and 200
msec). Background dots moved with speed 1.6°/sec and the
target's inner edge was at eccentricity 1.63°. The measure-
ments for target widths of 0.16° and 0.72° were also performed
for a background dot speed of 4.8°/sec.

In experiment III, we measured motion segmentation
thresholds for targets defined by a speed distribution that
overlapped with the speed distribution of the background.
Background dots (whose positions were selected at random)
were assigned speeds from a Gaussian distribution of standard
deviation 0.6°/sec, centered on 1.6°/sec. Target dots were
assigned speeds from Gaussian distributions of standard de-
viation 0.6°/sec, with mean value ranging from 1.73° to 4.80/
sec. Target width was fixed at 0.48°; stimulus duration was
varied from 34 to 200 msec.

In experiment IV, we measured motion detection thresholds
as a function of stimulus duration for a 6.5° square array of
1024 dots moving uniformly vertically upward, as well as, for
one observer, for a rectangular array of width 0.72° positioned
with its inner edge 1.63° eccentric to the central fixation point.
Size, luminance, and color of dots were as above. We per-
formed this measurement in a temporal 2AFC paradigm using
the same sequence of events as above repeated twice per trial.
The two stimulus presentations in each trial were separated by
a 200-msec blank interval. In one interval the dots were in
motion; in the other, the dots were static. The observer's task
was to indicate in which interval the dots appeared to move.

Color Stimuli and Measurements. We measured color
segmentation thresholds using the same spatial 2AFC proce-
dure as for the motion case. All specifications were as above
except that the segmentation signal was defined by a difference
only in the dot color distributions for target and background.
The dots were static and had a luminance of 6 cd/m2 against
a dark gray stimulus field of luminance 0.5 cd/m2 in a black
surround. Background dots were assigned colors from a uni-
form distribution in color space centered on CIE x, y = (0.38,
0.35), with CIE x values ranging from 0.28 to 0.48 and CIE y
values ranging from 0.29 to 0.41. The target dots were assigned
colors from a set of uniform distributions, each with the same
mean and range CIE y value as the background distribution.
The CIE x values of the target dots spanned a range of ±0.06
around a mean value taken from the set (0.385, 0.395, 0.405,
0.415, 0.425, 0.435).
Note that the target distribution was completely contained

within the background distribution for four of the six mean x
values and extended only very little outside the background
distribution for the other two meanx values. One advantage of
using broad overlapping distributions is that the segmentation
task cannot be performed by detection of colors of single
target dots. When the difference between the target and
background mean CIE x values is large enough the target
appears vividly distinct in color from the background.
As for the motion case, we varied size and eccentricity of the

color targets. In experiment Ib, we compared thresholds for a
fixed broad target (1.44°) with those for a narrow target (0.32°)
at two eccentricities, aligning its inner and outer edges sepa-
rately with those of the broad target. Stimulus duration was 67
msec. In experiment IIb, we measured thresholds as a function
of stimulus duration (17,67, 100, and 200 msec) for three target
widths (0.32°, 0.72°, and 1.44°). Target inner edges were each
at eccentricity 1.63°.
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Determination of Thresholds. Each experimental run con-
sisted of 20 trials per target signal value; five runs were
completed for each condition, giving a total of 100 measure-
ments for each value for each condition. We determined
psychometric functions by fitting cumulative Gaussian function
values to the percentage correct responses for the five (motion)
or six (color) target signal values. Thresholds were computed
as the target signal value yielding 75% correct responses.

RESULTS

Fig. 2 Upper shows how motion segmentation thresholds
(expressed as Weber fractions) depend on target size and
eccentricity (experiment Ia). The threshold for the narrow
target increases with eccentricity and is always larger than that
for the broad target. If the targets were detected by edge-based
processes alone, one might expect the broad target to be more
readily detected than the narrow eccentric target, because its
inner edge is less readily detected due to its peripheral
location, compared with the inner edge of the broad target.
The probability of detecting the broad target should then be no
more than the combined probabilities of detecting the central
and eccentric narrow targets, with each of which it shares one

Observer PM Observer GT

0.6

1.2

| 0.4 I | + r

II

E0.32 0.32 1.44 0.32 0.32 1.44

ecc ecc

L

0.8

0.32 0.32 1.44 0.32 0.32 1.44
ecc ecc

target width (degrees)

c 0.05 T Observer PM
0C

, 0.04

0.03 .
v)

0.02 ! +

001

- n-onOl 1 AA

Observer AL

0.32 0.32 1.44
ecc

edge. (In fact, since the two narrow targets contribute four
assumptively independent edges, the probability of detecting
the broad target with just two edges should be less.) To
compute the predicted threshold for detecting the broad target
by probability summation, we compute the combined proba-
bility at each signal strength, fit a psychometric function to the
combined probabilities, and take the threshold signal as that
yielding 75% correct responses. For each observer, the pre-
dicted threshold for the broad target from probability sum-
mation of the two narrow targets is significantly higher than
that observed.

Fig. 2 Lower shows how color segmentation thresholds
depend on target size and eccentricity (experiment Ib). Again,
thresholds for the broad target are smaller than for the narrow
target, and, again, detection of the broad target cannot be
predicted from probability summation of detection of the two
narrow targets (except for observer RS).

Fig. 3 shows thresholds for absolute motion detection (ex-
periment IV) and for motion segmentation (experiment IIa) as
a function of stimulus duration for targets of various sizes. The
temporal build-up functions for broad and narrow segmenta-
tion targets differ strikingly. The curve is almost flat for the
broadest target and becomes sharply steeper for target widths
smaller than about 0.32°, with thresholds decreasing by a factor
of about 3 between stimulus durations of 34 msec and 100
msec. Performance reaches a plateau after about 100 msec. At
any given speed difference, a broad target is detected faster
than a narrow target. Thresholds for the "noisy" broad target
(0.48°) of experiment III, with speed distributions that overlap
the background speed distribution, are indistinguishable from
those for the 0.48° uniform target, for observer PM. (Similar
results were obtained for two other observers with different
stimulus parameters).
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FIG. 2. (Upper) Motion segmentation thresholds for uniform tar-
gets against uniform backgrounds, for two target widths (0.32 and
1.44°). Narrow target tested at two positions, inner edge at 1.6° and
2.65° (ecc). Background dot speed, 1.6°/sec vertically upwards; stim-
ulus duration, 50 msec. Thresholds are given as Weber fractions, i.e.,
as the fractional increase in target speed relative to background speed
at 75% correct responses. (Lower) Color segmentation thresholds for
broad distributions of target and background dot colors. Target size
and eccentricities are as above. Thresholds are given as the difference
between mean CIEx values of the target and background distributions
at 75% correct responses. Stimulus duration, 67 msec. Pluses mark
thresholds for the 1.44° target predicted by probability summation of
the two narrow targets. Error bars show the SEM. *Observer RS is
monocular.
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FIG. 3. Motion segmentation thresholds for uniform speed distri-
butions and motion detection thresholds (thick line) as a function of
stimulus duration and target size (observers PM and AL). For motion
segmentation, all background dots moved upward at 1.6°/sec. For
motion detection, all dots in the 6.5° square field moved uniformly
upward in one interval and were static in the other. Thresholds are
given as target speed in the segmentation task and dot speed in the
detection task, necessary to yield 75% correct responses. Error bars
show the SEM.
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By comparing the motion segmentation and detection
curves for both observers (PM and AL), we see that for
stimulus durations less than 60-80 msec, the broadest seg-
mentation targets are detected at smaller target speeds than
that required to detect motion of a whole field of dots. This is
particularly noteworthy because the background in the seg-
mentation stimulus is not static but moves with a speed of
1.6°/sec in the same direction as the target. On the other hand,
observers cannot detect a narrow motion segmentation target
for any stimulus duration unless they are also able to detect
absolute motion of the 6.50 square field. The motion detection
curves resemble those for segmentation of the narrowest
targets, except that motion detection is not completely satu-
rated after 100 msec. Motion detection thresholds for a broad
target (0.720), measured for observer PM, are slightly higher
than for the square field but follow qualitatively the same
exponential decline with stimulus duration. (For stimulus
duration of 34 msec, the motion detection thresholds for the
broad target and square field are 5.96 ± 0.4 and 4.6 + 0.3 °/sec,
whereas the motion segmentation threshold for the broad
target is 2.23 + 0.3 against a background speed of 1.6°/sec.)
These results suggest a qualitative difference between the
segmentation mechanisms responsible for detection of broad
and narrow targets. Segmentation of the broad target saturates
more rapidly than does detection of its motion.
The suggestion that a coarse scale segmentation mechanism

underlies the rapid detection of the broad target and is distinct
from the mechanism underlying detection of the narrow target
is bolstered by predictions from probability summation. If the
same mechanism operates for both, but simply recruits more
signal for the broad target, then the probability of detecting the
broad target should be no greater than that of detecting several
narrow targets summing to the same area. For stimulus
duration of 34 msec, for observer PM, the predicted threshold
for the target of width of 0.320 computed by probability
summation of two independent responses to targets of width
0.160 is 4.12 + 0.19°/sec compared with the measured value of
2.84 ± 0.09°/sec. For observer AL, the predicted threshold for
the target of width 0.720 computed by probability summation
of four responses to targets of width 0.160 is 5.6 + 0.25°/sec,
compared with the measured value of 3.3 + 0.11°/sec. There-
fore, detection of the broad target cannot be explained by
simple spatial summation of the narrow target detection
mechanism.
These results show that motion segmentation depends on

spatial as well as temporal scales. One possible explanation for
the difference in temporal build-up between broad and narrow
targets might be that it is harder to detect movement per se of
the narrow target. For observer PM in Fig. 3, segmentation
thresholds for the narrowest target and motion detection
thresholds are similar (about 50/sec) for the shortest duration
of 34 msec. If the difference between narrow and broad targets
is caused by difficulties in detecting movement of the narrow
target, it should disappear when the speed of the narrow target
is well above 50/sec. We therefore repeated the measurements
with a background speed of 4.80/sec and target speeds larger
than 50/sec. Fig. 4 shows that the difference between the broad
and narrow targets persists.

Fig. 5 shows how color segmentation thresholds depend on
stimulus duration and target size (experiment Ilb). In contrast
to motion segmentation, there is no temporal build-up of color
segmentation for the durations studied here. Rather, there is
a slight tendency for thresholds to increase with stimulus
duration (observer GT). For all stimulus durations, broad
targets are more easily detected than narrow targets. As for
motion segmentation, the color segmentation thresholds for
broad targets cannot be predicted by probability summation of
segmentation performance for narrow targets summing to the
same area. For example, probability summation for the 0.720
target from two 0.320 targets predicts thresholds of 0.390 and
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FIG. 4. Temporal build-up curves for motion segmentation of
uniform speed distributions for a background dot speed of 4.8°/sec, for
two target sizes (observers PM and GT). Thresholds are given as
Weber fractions of target-background speed (see Fig. 2) at 75%
correct responses. Error bars show the SEM.

0.399 compared with observed thresholds of 0.382 and 0.391
for observers PM and GT, respectively (with SEM values of
±0.002 for each). Thus, color segmentation depends on spa-
tial, but not temporal scales.

DISCUSSION
These results reveal two important features of segmentation by
motion: thresholds decrease with target size and temporal
build-up of the segmentation signal depends on target size.
Segmentation by color is qualitatively different: although color
segmentation thresholds also decrease with target size, there
is no temporal build-up of the segmentation signal for any fixed
target size. For both motion and color, the difference in
segmentation behavior between broad and narrow targets
cannot be explained by an edge-based process: narrow targets
with either edge aligned to the corresponding edge of the
broad target are less easily detected than the broad target. The
lower detection thresholds for the broad target cannot be
predicted by probability summation of detection of the two
narrow targets combined (with inner and outer edges aligned
to the broad target, respectively). Edge-based processes, there-
fore, cannot be solely responsible; the difference in segmen-
tation behavior of the broad and narrow targets must lie in the
operation of region-based processes.
For motion segmentation, this conclusion is further sup-

ported by the difference in the temporal build-up functions for
broad and narrow targets. The temporal build-up curve rapidly
flattens as target size increases. For a given speed difference
between target and background, a broad target is detected
faster than a narrow target. This result suggests that the
region-based process in motion segmentation is fastest or
perhaps operative only on a coarse scale.
Comparing these results with the motion detection curve

reveals that absolute motion detection cannot underlie this fast
region-based segmentation process. For stimulus durations
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FIG. 5. Color segmentation thresholds as a function of target size
and stimulus duration (observers GT and PM). Thresholds are given
as the difference between the mean CIE x values of the target and
background distributions at the level of 75% correct responses. Error
bars show the SEM. The shortest duration, 17 msec, corresponds to
one frame. Downward arrow marks upper limit for threshold.

shorter than 60-80 msec, segmentation thresholds for the
broad target are smaller than motion detection thresholds,
even when the segmentation threshold is expressed as absolute
target dot speed. The data suggest instead that a mechanism
that detects relative motion between target and background
dots underlies the rapid segmentation of the broad target. In
contrast, the temporal build-up curve for the narrow target is
steep, resembling more the absolute motion detection curve as

well as build-up functions for speed discrimination (23, 24). At
every stimulus duration, segmentation thresholds for the nar-
row target are higher than those for absolute motion detection.
But the difference in temporal dependence for broad and
narrow targets persists at target speeds well above the thresh-
old for absolute motion detection, showing that it is not caused
by difficulty in detecting motion of the narrow target.
These data support the existence of two fundamentally

distinct motion mechanisms with distinct spatiotemporal prop-
erties: one that signals relative motion between two regions;
and another, slower one that signals absolute motion, or rather,
motion relative to the observer. *
The relative motion mechanism responds rapidly and with

greater sensitivity to small speeds (or speed differences) than
the absolute motion mechanism. This conclusion is consistent
with Snowden's finding (25) that the minimum displacement
limit for motion detection (dmin) in random dot patterns is
governed by relative, not absolute, motion signals.

*We cannot exclude the possibility that detection of the absolute
motion stimulus occurs by detection of its motion relative to the
monitor frame, which was dimly visible in an otherwise black tunnel.
We argue that such motion detection is still qualitatively distinct from
detection of relative motion contained in the stimulus because for the
short stimulus durations used the monitor frame is a low-contrast
peripheral stimulus whose detectability is minimal.

Our results suggest that the relative motion mechanism is
responsible for fast region-based segmentation. The most plau-
sible explanation for the robust difference in segmentation be-
havior for the broad and narrow targets is that this relative motion
mechanism is responsible for both, but slower for narrow targets
because of its inherent dependence on spatial scale.
The region-based segmentation process must derive from a

similarity signal within the target. How might this signal be
generated? There are two main possibilities: the first is a
simple linear filtering process that adds local motion signals;
the second is a cooperative process involving nonlinear inter-
actions between motion signals over space (26, 27). Each would
then be followed by a decision process that determines seg-
mentation. The first possibility is unlikely given that segmen-
tation performance for the broad targets cannot be predicted
by probability summation of the independent responses to an
appropriate number of narrow targets adding up to the same
width. Further support for a nonlinear cooperative process lies
in the result that segmentation thresholds are nearly the same
for broad targets with finite speed distributions that overlap
extensively with the background speed distributions as for
targets and backgrounds with nonoverlapping uniform speeds.
If local feature contrast detection were the only source for
motion segmentation, segmentation should become very much
harder for overlapping target and background distributions,
contrary to what we find. Indeed, for short durations, the
overlapping and nonoverlapping speed distributions "look"
the same.

It is therefore most likely that the region-based process
underlying motion segmentation of the broad target involves
fast coherent signals generated by cooperative interactions
between local motion signals. Our data suggest that this
process integrates information initially over a coarse spatial
scale. For the narrow targets, this integration over space is
initially dominated by the background signal, and the motion
differences are swamped. Thresholds for narrow targets rise
steeply for short stimulus durations, but over time the finer-
scale discontinuities emerge and thresholds decrease.
Our results are consistent with the conclusion of Vaina and

Grzywacz (28) from studies on brain-lesioned patients that the
computation of motion coherence, involving spatial integra-
tion of motion signals, is distinct from motion discontinuity
localization. Vaina and Grzywacz (28) also conclude that the
visual system does not need fully encoded velocity signals for
motion discontinuity localization, as suggested by Clocksin
(29). These results argue against an alternative hypothesis to
explain our data that an edge-based process mediates segmen-
tation of the narrow target and requires absolute motion
signals to be independently detected within target and back-
ground, and then differenced.
Our results also demonstrate an early contribution of region-

based processes to segmentation by color. Since the local
feature contrast between target and background is minimized
by the overlapping color distributions, segmentation requires
the integration of signals over space. Clearly these signals
increase in strength as the size of the target increases. As was
the case for motion, we cannot explain the psychometric
functions for a broad target by the independent action of two
local border mechanisms. There is a fundamental difference
between the segnientation mechanisms for color and motion:
the color segmentation signal does not build up with stimulus
duration for any target width, whereas the motion segmenta-
tion signal does. This difference cannot be because the motion
stimulus simply provides more information for segmentation
over time, as there is no build up of the color segmentation
signal even when all target and background dots are in motion
(with either random or uniform speeds) (30).

In summary, we conclude: Region-based segmentation pro-
cesses make early contributions to segmentation by both
motion and color. For motion, the region-based segmentation
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process operates from coarse to fine scales, is faster on a coarse
scale than an edge-based process, and relies on a relative
motion detection mechanism. For color, the region-based
process does not integrate over time but strongly depends on
spatial scale. Region-based segmentation by color may, there-
fore, reach completion simultaneously on each of several
distinct spatial scales. On the other hand, other results (e.g.,
refs. 12 and 13) clearly demonstrate the importance of local
feature contrast for segmentation in all domains (motion,
color, luminance, texture, and disparity). If region-based pro-
cesses for segmentation exist alongside edge-based processes,
surface detection might not necessarily require establishment
of local discontinuities. The early visual system might be more
interactive and less hierarchical than assumed by standard
theories (31, 32).
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